

9th Edition, revised in January, 2021

(FOR RESEARCH USE ONLY. DO NOT USE IT IN CLINICAL DIAGNOSIS !)

CNBr Focurose 4FF

Catalog No: E-CM-AF17

This manual must be read attentively and completely before using this product.

May you have any problems, please contact our Technical Service Center for help.

Phone: 240-252-7368(USA) 240-252-7376(USA) Email: <u>techsupport@elabscience.com</u> Website: <u>www.elabscience.com</u>

Please kindly provide us the lot number (on the outside of the box) of the kit for more efficient service.

Please read this manual carefully before use to ensure the performance and successful operation. If you have any questions, please contact our Technical Support.

Product introduction

CNBr Focurose 4FF is a kind of fast flow purification media which has been activated with cyanogen bromide (CNBr). It is suitable for coupling of protein, polypeptide, nucleic acids and other biomolecules containing amino groups. CNBr Focurose 4FF has been verified repeatedly and widely used in the bio-pharmaceutical purification procedure.

Advantages

- 1. Wide application range: It can be used for coupling of macro biomolecules containing amino groups.
- 2. Multi-point coupling. Simple, flexible, fast and effective. It can efficiently maintain the biological activity and stability of biomolecules.
- 3. Fast flow rate, high yields and easy to be implemented.

Performance index

Matrix	Highly cross-linked 4% agarose	
Particle size range	45-165 μm	
Average particle size	90 μm	
Combined capacity	30 mg (Trypsinogen)/mL (media)	
pH stability	2-14 (short-term)	
	3-13 (long-term)	
Maximum flow rate	700 cm/h	
Pressure	≤ 0.3 MPa	
Storage buffer	100% Acetone	
Storage temperature	4~8℃	

Coupling condition

1. Wash (Solution A)

Take appropriate amount of settled gel (0.83g, equal to about 0.1 mL after washed), resuspend the media with 5 times volume of Solution A. Drain the liquid after 5 min. Repeat this procedure for 5 times.

Notes: This operation is used for activation of media. Make sure that the wash volume of Solution A is sufficient and the wash time is about 30 min (the groups on the media will hydrolyze if washed too long).

2. Preparation of ligand solution

Dissolve the target coupled biomolecule with Solution B or transposition the replace the biomolecule in Solution B (the concentration of biomolecule should be $1\sim10$ mg/mL, the recommended concentration is 5 mg/mL).

Note: Ensure that the pH and salt concentration during coupling is in accordance with Solution B.

3. Coupling

Mix the washed media and prepared sample at the ratio of 1:1 (volume: volume). Mix fully and gently for 3~4 hours at room temperature. Drain the solution after coupling successful (by detecting the concentrations of biomolecule before and after coupling).

Note: It is recommended to operate the coupling for $3\sim4$ hours at room temperature or overnight at $4\sim8^{\circ}$ C for unstable ligands.

4. Wash (Solution C)

Resuspend the coupled media with 5 times volume of Solution C. Drain the liquid after 5 min. Repeat this procedure for 3 times.

Note: This procedure is used for washing the residual biomolecule in the media. Washing procedure must be sufficient.

5. Blocking

Resuspend with 5 times volume of Solution C. Mix fully and gently for 3~4 hours at room temperature. Drain the liquid.

Note: This procedure is used for blocking groups on the media.

6. Wash (Solution D and Solution E)

Resuspend the blocked media with 5 times volume of Solution D. Drain the liquid after 5 min. Then resuspend the media with 5 times volume of Solution E. Drain the liquid after 5 min. Repeat this procedure for 3 times.

Note: This procedure is used to remove the biomolecules which are defective tightness coupled.

7. Storage

Resuspend the media with 5 times volume of purified water and drain the liquid. Then resuspend the media with 5 times volume of 20% ethanol and drain the liquid. Store the media by immersing with 20% ethanol.

Note: This procedure is used to store the media and avoid of microorganism.

8. Preparation of solution

Solution A: 0.001M HCl, 0.5M NaCl, pH 3.0. Store at 4~8°C. (Solution A should be pre-cooled before used.)

Solution B: 0.2M NaHCO₃, 0.5 M NaCl, pH 8.3 (pH=8.5-9.0 if the coupled biomolecule is IgG.) Store at room temperature.

Solution C: 0.1M Tris-HCl, pH 8.3. Store at room temperature.

Solution D: 0.05M Tris-HCl, 0.5M NaCl, pH 8.5. Store at room temperature.

Solution E: 0.05M Glycine, 0.5M NaCl, pH 3.5. Store at room temperature.

Solution F: 1.0M NaCl. Store at room temperature.

Cleaning

The excellent performance of media (e.g. loading ability, mobility, column efficiency, etc.) can be recovered after cleaning the strong coupling substance (e.g. some strong coupling protein, denatured protein, lipids, etc.).

It is recommended to wash the media after used for each 5 times. The exact washing frequency should be adjusted according to the cleanliness of the purified sample.

- 1. Conventional cleaning
 - (1) Wash the media with $5 \sim 10$ column volumes of purified water.
 - (2) Wash the media with $5\sim 10$ column volumes of Solution D.
 - (3) Wash the media with $5 \sim 10$ column volumes of Solution E.
 - (4) Wash the media with $5 \sim 10$ column volumes of Solution F.
 - (5) Wash the media with $5 \sim 10$ column volumes of purified water.
 - (6) Store the media after washed with $5 \sim 10$ column volumes of 20% ethanol.
- 2. Deep cleaning
 - (1) Wash the media with 2~5 column volumes of 0.2% non-ionic detergent, then wash the media with 5~10 column volumes of purified water immediately.
 - (2) Wash the media with 2~5 column volumes of 6M guanidine hydrochloride, then wash the media with 5~10 column volumes of purified water immediately.
 - (3) Store the media after washed with $5 \sim 10$ column volumes of 20% ethanol.

Note: Whether deep cleaning is suitable depends on the stability of coupling biomolecules. A pre-experiment is recommended to be operated before deep cleaning to determine the stability of biomolecules.

Problem	Possible cause	Suggestion
Low coupling efficiency	Salt concentration or pH Solution	Check whether the preparation of
	B is wrong.	Solution B is right.
	Insufficient coupling time.	Prolong the coupling time
	Unsuitable pre-activating resin.	Try other kinds of pre-activating resin.
	Overloading of sample volume.	Decrease the sample volume.
	Speed of sample loading is too	Reduce the flow speed of sample
	fast.	loading.
The target compound	Protein or lipids accumulate in the	Wash the media timely and
does not combine with	media.	effectively.
the media or the	Sample inactivates in the process	Store the sample to be purified
combining amount is	of storage or sample loading.	correctly to maintain the activity.
low when purifying	Low combining ratio between	Try to increase the ligand
	ligand and target compound.	concentration during coupling.
	Ligand degrades during coupling	Determine the stability of ligand
	or washing.	during coupling or washing.
	The target compound does not	Reduce the flow speed of sample
	combine with the media or the	loading and check the combining
No target compound	combining amount is low.	ability of media.
was collected or only a		Change the corresponding elution
small amount of target	Unsuitable elution condition.	condition or increase the elute
compound was		ability of elution buffer.
collected	The target compound accumulates in the elution buffer.	Check the stability of target
		compound in the wash buffer (salt
		concentration, pH, etc.)

Trouble shootings

	Sample has not been pretreated.	Samples must be centrifuged or	
		filtered before loading	
	High viscosity of sample.	Dilute the sample properly with	
		equilibrium liquid to decrease the	
		viscosity.	
	Insufficient washing.	Increase the washing volume until	
		the baseline smooth and keep	
Low purity of target		consistence with equilibrium	
		liquid.	
	Impurity protein or lipids	Wash the media timely and	
	accumulate in the media.	effective.	
compound	Poor elution condition, fast elution		
compound	speed and abrupt elution gradient.	Adjust the elution condition.	
		Determine the stability of target	
	The target compound degrades.	compound.	
	Bad loading effect of column resin.	Reload or re-purchase.	
	Non-specificity absorption of	Add appropriate additive to reduce	
	impurity materials.	the non-specific absorption.	
	The top of separation column has a	Reload the column or reduce the	
	large volume of sample.	volume of the sample.	
	There is microbial grow in the	Correctly store the media after	
	media.	used.	
	Flow rate of sample application is	Reduce the flow rate of sample	
	too fast.	loading.	
	Protein or lipids accumulate in the		
Decrease of loading	media.	Wash the media timely.	
volume	Ligand dropped off due to		
	excessive use.	Re-couple with new media.	
	Sample inactivates in the process	Store the sample to be purified	
	of storage or sample application.	correctly to maintain the activity.	
The chromatographic			
peak rises slowly	The media was loaded too tight.	Reload the column.	
The chromatographic	The medie was losded to a los	Reload the column.	
peak trails	The media was loaded too loose.		
The column bed cracks	Leakage occurred or a large	Check whether there is leakage or	
or being dry	volume of bubbles was introduced.	bubble, reload the column.	

9th Edition, revised in January, 2021

	Protein or lipids accumulate in the	Wash the media or filter membrane
Flow of the column is exceedingly slow	media.	timely.
	Protein precipitates in the media.	Adjust the content of equilibrium
		liquid and wash buffer to maintain
		the stability of target compound
		and combining efficiency of
		media.
	There is microbial grow in the media.	Filter and degas all the reagents.
		Samples must be centrifuged or
		filtered before applied.