

(FOR RESEARCH USE ONLY, DO NOT USE IT IN CLINICAL DIAGNOSIS!)

ANX Focurose 4FF

Catalog No: E-CM-IE18

This manual must be read attentively and completely before using this product.

May you have any problems, please contact our Technical Service Center for help.

Phone: 240-252-7368(USA) 240-252-7376(USA)

Email: techsupport@elabscience.com

Website: www.elabscience.com

Please kindly provide us the lot number (on the outside of the box) of the kit for more efficient service.

Please read this manual carefully before use to ensure the performance and successful operation. If you have any questions, please contact our Technical Support.

Product introduction

ANX Focurose 4FF is suitable for separation and purification of all types of charged biomolecules, such as proteins, peptides, nucleic acids, etc.

Advantages

- 1. Fast flow rate, increase production capacity.
- 2. Medium granule, good resolution.
- 3. Good compatibility, suitable for initial capture or intermediate purification of biomolecules of vario us scales.
- 4. The purification process has high flexibility and can be used in combination with hydrophobic chro matography.

Table 1: Performance index

Ligand	ANX Focurose 4FF	
Matrix	Highly cross-linked 4% agarose	
Particle size range	45-165 μm	
Average particle size	90 μm	
Media type	Weak anion exchanger	
Charged group	$-N^{+}(C_{2}H_{5})_{2}H$	
Ionic capacity	130-170 μmol Cl ⁻ /mL (media)	
pH stability	2-14 (short term)	
	3-10 (long term)	
	All of the commonly used buffers, 1M NaOH, 70% Ethanol,	
Chemical stability	8M urea, 6M Guanidine hydrochloride. Avoid of oxidizing	
	agent, anionic detergent and anionic buffer	
Flow rate	250 cm/h	
Pressure	≤0.3 MPa	
Storage buffer	20% Ethanol	
Storage temperature	4~30°C	

(Negative charge)

Isoelectric point

Isoelectric point

Figure 2: Selection of ion exchange chromatographic media

Instruction:

(Positive charge)

- 1. Choose the cation exchange medium when pH of target solution < isoelectric point of target.
- 2. Choose the anion exchange medium when pH of target solution > isoelectric point of target.
- 3. When choosing an ion exchange medium, the pH of all the applied solutions should be within the application pH range of ion exchange media.

x axis: pH of target protein solution y axis: net surface charge of target protein

4. When choosing an ion exchange medium, the pH, salt type, and salt concentration of all the applied solutions should be able to maintain the activity of target, so as to avoid acid/alkali hydrolysis and precipitation of target.

Selection of buffer

Table 2: Anion exchange buffer

pH range	Salt	Concentration (mM)	Counterion	pKa(25℃)
4.3-5.3	N-Methylpiperazine	20	Cl ⁻	4.75
4.8-5.8	Piperazine	20	Cl ⁻ or HCOO ⁻	5.33
6.0-7.0	Bis-Tris	20	Cl ⁻	6.48
6.2-7.2	Bis-Tris propane	20	Cl ⁻	6.65
7.3-8.3	Triethanolamine	20	Cl ⁻ or CH3COO ⁻	7.76
7.6-8.6	Tris	20	Cl ⁻	8.07
8.0-9.0	N-Methyldiethanolamine	20	SO ₄ ²⁻	8.52
8.4-9.4	Propane 1,3-Diamino	20	Cl ⁻	8.88
8.6-9.6	Bis-Tris propane	20	Cl ⁻	9.10
9.0-10.0	Ethanolamine	20	Cl ⁻	9.50
9.2-10.2	Piperazine	20	Cl ⁻	9.73
10.0-11.0	Propane 1,3-Diamino	20	Cl ⁻	10.55
10.6-11.6	Piperidine	20	Cl ⁻	11.12

Table 3: Cation exchange buffer

pH range	Salt	Concentration (mM)	Counterion	pKa(25℃)
2.6-3.6	Citric acid	20	Na ⁺	3.13
3.3-4.3	Lactic acid	50	Na ⁺	3.86
4.3-5.3	Acetic acid	50	Na ⁺ or Li ⁺	4.75
5.2-6.2	Methyl malonic acid	50	Na ⁺ or Li ⁺	5.76
5.6-6.6	MES	50	Na ⁺ or Li ⁺	6.27
6.7-7.7	Phosphate	50	Na ⁺	7.20
7.0-8.0	HEPES	50	Na ⁺ or Li ⁺	7.56
7.8-8.8	BICINE	50	Na ⁺	8.33

Instruction:

- 1. The type and concentration of buffer solutions must be selected strictly according to Table 2 and Table 3.
- 2. Wrong buffer (type and concentration) may interfere the separation effect, which mainly reflects on the effects of separation degree, loading of ion exchange medium, pH fluctuation in separation and purification process.
- 3. When choosing an ion exchange medium, the pH of all the applied solutions should be within the application pH range of ion exchange media.
- 4. All buffer reagents must use reagents that are analytically pure or of higher purity. Solutions must be operated with filtration (particle size $\leq 45~\mu m,\,0.22~\mu m.$ particle size $\leq 165~\mu m,\,0.45~\mu m.$ particle size $\leq 300~\mu m,\,0.8~\mu m.$ Avoid of blocking of ion exchange medium) and degassing (affect the separation effect).

Preparation of sample

- 1. The pH and salt components of sample must be the consistent with the equilibrium liquid, which can be performed the buffer exchange by dilution or dialysis with equilibrium liquid, ultrafiltration and gel filtration (G25).
- 2. Filtration of sample (particle size \leq 45 μ m, 0.22 μ m. particle size \leq 165 μ m, 0.45 μ m. particle size \leq 300 μ m, 0.8 μ m. Avoid of blocking of ion exchange medium).

Note: It is not recommended to directly adjust the pH of sample solution with strong acid/ strong alkali, which may lead to degradation and inactivation of target protein.

Selection of purification mode

- 1. Wash the media with 5-10 CV (column volume) of purified water with a flow rate of 150 cm/h.
- 2. Equilibrate the media with 5-10 CV of equilibrium liquid with a flow rate of 150 cm/h until UV, pH, and conductance turns stable.
- 3. Apply the sample to the column.
- 4. Wash the media with 5-10 CV of equilibrium liquid until no material flows through.
- 5. Linear gradient elution (preferred): Linear gradient elution 10-20 CV (0%-50% eluent). Isometric elution: elution is performed by gradually increasing the salt concentration in the equilibrium liquid, elute with 5 CV of each salt concentration eluent.
- 6. Wash the media with 5 CV of 100% eluent.

 Note: Eluent = equilibrium liquid + 1M NaCl, Other components remain unchanged.

Cleaning

The excellent performance of media (e.g. loading ability, mobility, column efficiency, etc.) can be recovered after cleaning the strong coupling substance (e.g. some strong coupling protein, denatured protein, lipids, etc.).

It is recommended to wash the media after used for each 5-10 times. The exact washing frequency should be adjusted according to the cleanliness of the purified sample.

- 1. Wash the media with 5 CV of 2M NaCl with the flow rate of 50 cm/h for 1-2 h.
- 2. Wash the media with 5 CV of 1M NaOH with the flow rate of 50 cm/h for 1-2 h.
- 3. Wash the media with 5 CV of 2M NaCl with the flow rate of 50 cm/h for 1-2 h.
- 4. Wash the media with 5 CV of purified water with the flow rate of 50 cm/h until UV and conductance turns stable.
- 5. Store the media after washed with 5 CV of preserved buffer with the flow rate of 50 cm/h. Note: Preserved buffer is 20% ethanol or 0.1 M NaOH.

Trouble shootings

Problem	Possible cause	Suggestion	
	Overloading of sample volume.	Decrease the sample volume.	
	Speed of sample loading is too fast.	Reduce the flow speed of sample loading.	
	Protein or lipids accumulate in the	Wash the media timely and	
TTI	media.	effectively.	
The target compound does not combine with the media or the	The impurities or target is uncharged or charged with the same with the media.	Select the appropriate binding buffer.	
combining amount is low when purifying	Improper salt concentration and pH	Check the pH and conductance of	
low when purifying	in sample solution or equilibrium	sample solution or equilibrium	
	liquid.	liquid.	
	Improper buffer.	Refer to the buffer selection table.	
	Improper detergents were added to	Check if there is improper detergent	
	the sample.	in the sample.	
	The target compound does not	Confirm whather the toward	
	combine with the media or the	Confirm whether the target	
	combining amount is low.	combine with media or not.	
	Unsuitable elution condition.	The elution capacity of the eluent is	
No target compound		not enough. Adjust the pH or	
was collected or only a		increase the salt concentration of	
small amount of target		eluent.	
compound was	Insufficient elution time.	Decrease the flow rate and prolong	
collected	msufficient entiton time.	the retention time of eluent.	
	Insufficient elution volume.	Increase the elution volume.	
		Check the stability of target	
	The target compound accumulates in the elution buffer.	compound in the elution buffer (salt	
	in the elution buffer.	concentration, pH, etc.)	
Low purity of target compound	Sample has not been pretreated.	Samples must be centrifuged or	
		filtered before loading.	
	High viscosity of sample.	Dilute the sample properly with	
		equilibrium liquid to decrease the	
		viscosity.	
	Insufficient washing.	Increase the washing volume until	
		the baseline turns smooth and keep	
		consistence with equilibrium liquid.	
	Impurity protein or lipids	Wash the media timely and	
	accumulate in the media.	effective.	

	Poor elution condition.	Optimize the elution condition.	
	The target compound degrades.	Determine the stability of target compound.	
	Bad loading effect of column resin.	Reload or re-purchase.	
	The top of separation column has a	Reload the column or reduce the	
	large volume of sample.	volume of the sample.	
	There is microbial grow in the	Correctly store the media after	
	media.	used.	
	Speed of sample loading is too fast.	Reduce the flow speed of sample	
	Speed of sample loading is too fast.	loading.	
Decrease of loading	Protein or lipids accumulate in the	Wash the media timely.	
volume	media.		
	Ligand was oxidized or dropped off	Re-couple with new media	
	due to excessive use.	The couple with he withcom	
The chromatographic	The media was loaded too tight.	Reload the column.	
peak rises slowly		101000 010 00101111	
The chromatographic	The media was loaded too loose.	Reload the column.	
peak trails			
The column bed cracks	Leakage occurred or a large volume	Check whether there is leakage or	
or being dry	of bubbles was introduced.	bubble, reload the column.	
	Protein or lipids accumulate in the	Wash the media or filter membrane	
	media.	timely.	
		Adjust the content of equilibrium	
Flow of the column is	Protein precipitates in the media.	liquid and wash buffer to maintain	
exceedingly slow		the stability of target compound and	
exceedingly slow		combining efficiency of media.	
	There is microbial grow in the media.	Filter and degas all the reagents.	
		Samples must be centrifuged or	
		filtered before loading.	