


Tel:240-252-7368(USA) Fax: 240-252-7376(USA) techsupport@elabscience.com Website: www.elabscience.com

PRKAA1/PRKAA2 Polyclonal Antibody

Catalog No.E-AB-67096ReactivityH,M,RStorageStore at -20°C. Avoid freeze / thaw cycles.HostRabbitApplicationsIFIsotypeIgG

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Images

Immunofluorescence analysis of HeLa cells using PRKAA1/PRKAA2 Polyclonal Antibody at dilution of 1:100. Blue: DAPI for nuclear staining.

Immunogen Information

Immunogen Recombinant protein of human PRKAA1/PRKAA2.

GeneID 5562/5563

Swissprot Q13131,P54646 Synonyms AMPKa1/AMPKa2

Product Information

Buffer PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Purify Affinity purification **Dilution** IF 1:50-1:100

Background

The protein encoded by this gene belongs to the ser/thr protein kinase family. It is the catalytic subunit of the 5'-prime-AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor conserved in all eukaryotic cells. The kinase activity of AMPK is activated by the stimuli that increase the cellular AMP/ATP ratio. AMPK regulates the activities of a number of key metabolic enzymes through phosphorylation. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. Alternatively spliced transcript variants encoding distinct isoforms have been observed./The protein encoded by this gene is a catalytic subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and betahydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. Studies of the mouse counterpart suggest that this catalytic subunit may control whole-body insulin sensitivity and is necessary for maintaining myocardial energy homeostasis during ischemia.

For Research Use Only

Thank you for your recent purchase

If you would like to learn more about antibodies, please visit www.elabscience.com.

Focus on your research Service for life science