


Tel:240-252-7368(USA) Fax: 240-252-7376(USA) techsupport@elabscience.com Website: www.elabscience.com

NOG Polyclonal Antibody

Catalog No.E-AB-67977ReactivityM,RStorageStore at -20°C. Avoid freeze / thaw cycles.HostRabbitApplicationsWBIsotypeIgG

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Images

Western blot analysis of extracts of various cell lines using NOG Polyclonal Antibody at dilution of 1:1000.

Immunogen Information

Immunogen Recombinant fusion protein of human NOG

(NP_005441.1).

GeneID 9241 **Swissprot** Q13253

Synonyms NOG,SYM1,SYNS1,SYNS1A,noggin

Product Information

Calculated MW 25kDa Observed MW 28kDa

Buffer PBS with 0.02% sodium azide, 50% glycerol, pH7.3.

Purify Affinity purification **Dilution** WB 1:500-1:2000

Background

The secreted polypeptide, encoded by this gene, binds and inactivates members of the transforming growth factor-beta (TGF-beta) superfamily signaling proteins, such as bone morphogenetic protein-4 (BMP4). By diffusing through extracellular matrices more efficiently than members of the TGF-beta superfamily, this protein may have a principal role in creating morphogenic gradients. The protein appears to have pleiotropic effect, both early in development as well as in later stages. It was originally isolated from Xenopus based on its ability to restore normal dorsal-ventral body axis in embryos that had been artificially ventralized by UV treatment. The results of the mouse knockout of the ortholog suggest that it is involved in numerous developmental processes, such as neural tube fusion and joint formation. Recently, several dominant human NOG mutations in unrelated families with proximal symphalangism (SYM1) and multiple synostoses syndrome (SYNS1) were identified; both SYM1 and SYNS1 have multiple joint fusion as their principal feature, and map to the same region (17q22) as this gene. All of these mutations altered evolutionarily conserved amino acid residues. The amino acid sequence of this human gene is highly homologous to that of Xenopus, rat and mouse.

For Research Use Only

Thank you for your recent purchase

If you would like to learn more about antibodies, please visit www.elabscience.com.

Focus on your research Service for life science