Elabscience®

Anti-MERS-CoV Spike Polyclonal Antibody

E-AB-V1293

Application	WB,ELISA	Host	Rabbit
Storage	Store at -20°C. Avoid freeze / thaw cycles.		

Important Note Centrifuge before opening to ensure complete recovery of vial contents.

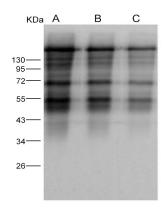
Product Details

Immunogen	Recombinant MERS-CoV Spike Protein (S1+S2 ECD, aa 1-1297, His Tag)	
Isotype	IgG	
Host	Rabbit	
Reactivity	MERS-CoV	
Dilution	WB 1:1000-1:5000 ELISA 1:5000-1:10000	
Storage Buffer	0.2 μm filtered solution in PBS	
Stability & Storage	Ships on ice packs. Store at -20°C	
Description	This antibody was produced in rabbits immunized with purified Recombinant MERS-CoV Spike	
	Protein (S1+S2 ECD, aa 1-1297, His Tag). And the antibody was purified by MERS-CoV	
	(NCoV / Novel coronavirus) Spike Protein affinity chromatography	

Antigen Infomation

Alternate Names	coronavirus s1, coronavirus s2, coronavirus spike, cov spike, ncov RBD, ncov s1, ncov s2, ncov	
	spike,RBD,S,s1,Spike RBD	
Background	The spike (S) glycoprotein of coronaviruses contains protrusions that will only bind to certain	
	receptors on the host cell. Known receptors bind S1 are ACE2, angiotensin-converting enzyme	
	2; DPP4, dipeptidyl peptidase-4; APN, aminopeptidase N; CEACAM, carcinoembryonic	
	antigen-related cell adhesion molecule 1; Sia, sialic acid; O-ac Sia, O-acetylated sialic acid. The	
	spike is essential for both host specificity and viral infectivity. The term 'peplomer' is typically	
	used to refer to a grouping of heterologous proteins on the virus surface that function together.	
	The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus	
	to the host cell at the advent of the infection process. It's been reported that SARS-CoV-2	
	(COVID-19 coronavirus, 2019-nCoV) can infect the human respiratory epithelial cells through	
	interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane	
	protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain	
	(RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements	
	needed for the membrane fusion. The S protein plays key parts in the induction of neutralizing-	
	antibody and T-cell responses, as well as protective immunity. The main functions for the Spike	
	protein are summarized as: Mediate receptor binding and membrane fusion; Defines the range	
	of the hosts and specificity of the virus; Main component to bind with the neutralizing antibody;	
	Key target for vaccine design; Can be transmitted between different hosts through gene	
	recombination or mutation of the receptor binding domain (RBD), leading to a higher mortality	
	rate.	

For Research Use Only


Thank you for your recent purchase. If you would like to learn more about antibodies,please visit www.elabscience.com. Focus on your research Service for life science

Applications:Activ- Activation; Block- Blocking; Separation- Cell Separation ; Cell Sep-Neg- Cell Separation by Negative Selection; FA-Functional Assay; Neut- Neutralization; Stim- Stimulation; FCM- Flow Cytometry; ICFCM: Intracellular Staining for Flow Cytometry; WB-Western Blotting; IHC- Immunohistochemistry; IF- Immunofluorescence; IP- Immunoprecipitation

Elabscience®

Tel:240-252-7368(USA) Fax: 240-252-7376(USA) techsupport@elabscience.com Website: www.elabscience.com

Images

Western Blot analysis of Recombinant MERS-CoV Spike Protein (S1+S2 ECD, aa 1-1297, His Tag)(PKSV030236 with 5ng, 2ng and 1ng) using Anti-MERS-CoV Spike Polyclonal Antibody at dilution of 1:1000.

For Research Use Only

Thank you for your recent purchase. If you would like to learn more about antibodies, please visit www.elabscience.com. Focus on your research Service for life science

Applications:Activ- Activation; Block- Blocking; Separation- Cell Separation ; Cell Sep-Neg- Cell Separation by Negative Selection; FA-Functional Assay; Neut- Neutralization; Stim- Stimulation; FCM- Flow Cytometry; ICFCM: Intracellular Staining for Flow Cytometry; WB-Western Blotting; IHC- Immunohistochemistry; IF- Immunofluorescence; IP- Immunoprecipitation